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SUMMARY 
This paper is a discussion of recent experiments in shock-wave 

refraction which have clarified a special type of shock outflow 
process appearing to have relevance to other shock interactions, 
and notably to shock reflection from an oblique wall. For certain 
incident shock strengths and angles of incidence a, the airlmethane 
refraction problem simulates closely the situation in the trouble- 
some range of the reflection problem, in which a lies between the 
value a, at which the theoretical solutions terminate and the 
value a. that marks the onset of Mach reflection, and in which 
the flow deflections cannot be reconciled with theoretically 
permissible reflected shock strengths. In the analogous refraction 
cases, the reflected shock is observed to increase in strength along 
its length to a maximum value at the intersection point, and to be 
followed by a subsonic rarefaction zone which also increases in 
severity near the intersection. In fact, this zone appears to 
coalesce into a subsonic discontinuity, just at the intersection 
point-a feature which would contradict one of the basic assump- 
tions of the regular reflection and refraction theories. Other 
refraction experiments suggest that a similar process is relevant 
to the Mach reflection configuration, and may account for the 
discrepancies in the three-shock theory for weak incident shocks. 

1. INTRODUCTION 
In the branch of fluid mechanics concerned with shock-wave phenomena, 

the problem of the reflection of a shock front from a rigid boundary has 
long been a matter of fundamental interest and concern. This was the 
first shock interaction to  be studied experimentally in sufficient detail to 
permit a significant appraisal of the theoretical techniques available for the 
treatment of these non-linear problems. The earliest results from such 
experiments uncovered discrepancies between mathematical prediction and 
observed behaviour that were sufficiently acute to  cast doubt on the validitj- 
of some basic theoretical assumptions. And to this day, despite considerable 
systematic experimental and theoretical work on this subject (Smith 1945 ; 
Fletcher, Taub & Bleakney 1951; White 1952; von Neumann 1943; 
Polachek & Seeger 1944; Bargmann 1945; Bleakney & Taub 1949), 
certain of these paradoxes have not yet been resolved, and our understanding 
of the reflection problem remains incomplete. 

F.M. c 
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The theoretical approach to the problem is discussed in detail in most 
of the references cited above, and has recently been reviewed by Griffith 8r 
Bleakney (1954). For the purposes of this article it will be sufficient to 
recall the assumptions that underlie the formulation of the problem* (see 
figure 1). 

(a) The interaction of the incident shock with the wall results in a single 
reflected shock travelling away from the wall into the medium behind the 
incident shock. 

(b)  Each of the three angular regions of flow formed by this configuration 
of shocks and boundary is 
only across the two shocks. 

.R 

uniform; hence the state of the gas changes 

f y 

Figure 1. Regular reflection of a plane shock : incident shock I deflects flow toward 
wall; reflected shock R re-deflects flow parallel to wall. 

(c) Each shock can be treated as in the standard Rankine-Hugoniot 
theory to relate the change in flow velocity to the pressure ratio across it. 

(d) The net deflection of the gas flow by the two shocks is such that 
the flow in the region behind the reflected shock is parallel to the wall. 

(e) The configuration is stationary when expressed in coordinates x / t ,  

(f) No energy is lost to the wall during the process. 
Assumption (b) ,  which will require further examination later, was 

introduced to simplify the analysis. Without it, one would need to include 
the appropriate gas-dynamical equations for the two-dimensional flow in 
the angular regions, to be solved simultaneously with the shock equations. 
This assumption has the effect, in the more general case of curved shocks 

* The experiments on which this paper is based were performed in a shock tube 
(cf. Bleakney, Weimer & Fletcher 1949). Unless otherwise noted, all discussions 
and illustrations likewise refer to the shock-tube situation, in which the incident 
shock advances into a gas at rest. In comparing shock tube problems with the 
analogous wind-tunnel or free-flight situations, it should be noted that more than a 
simple coordinate transformation is involved. In the latter cases, boundary layers 
exist on all surfaces exposed to the flow; and it is with these, rather than with the 
surfaces themselves, that the shocks interact. 

Y f t .  
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and non-uniform flow fields, of restricting the consideration to a small 
area surrounding the intersection point-small enough that the changes of 
state of the gas in the angular regions are negligible compared with the 
discontinuous changes across the shocks. 

The assumptions listed above define a ' regular reflection ' process, 
solutions for which can be found only for angles of incidence M smaller 
than some limiting angle M,, which depends on the incident shock strength 
and the gas being considered (see figure 2). For larger values of M, no real 
solutions exist, implying that physically the assumed process cannot occur 
for these angles of incidence. 

---? /Pz---' 

0.2 0.4 0.6 0.8 

Figure 2.  Critical angles of incidence in shock reflection: theoretical limit for 
regular reflection a,, experimentally observed onset of Mach reflection a0 ; 
and condition for sonic outflow as; zs. inverse pressure ratio across incident 
shock front. 

I n  most respects, experimental observations support the regular 
reflection theory. When a plane shock wave is caused to impinge on a 
rigid wall at any angle smaller than clP, a reflected shock does appear, inter- 
secting the incident shock at the wall, of strength and angle of reflection 
in good agreement with the theoretical predictions (cf. Smith 1945). 

Extension of such experiments to larger angles of incidence reveals 
that beyond some limiting value a,,, which is very close to (but always 
slightly larger than) the theoretical value M,, the intersection point leaves 
the wall, and occurs instead at some finite distance from it. This inter- 
section is then joined to the wall by a third shock, called the stem, and also 
by a slipstream, or contact surface, which trails behind the pattern, thus 
forming the well-known Mach configuration (see figure 3). The three- 
shock interaction occurring in this pattern has also been studied theoretically. 
This theory presumes that the pressure changes and flow deflections 
experienced by the gas passing through the pattern immediately above the 
'triple point' (i.e. the intersection of the incident, reflected, and stem 
shocks) are the same as that for the gas passing immediately below it, although 
the exit velocities may in general be of different magnitude (as evidenced 

c 2  
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by the slipstream). Again, uniformity of the angular regions of flow is 
assumed, restricting the consideration to the immediate neighbourhood of 
the intersection. 

2. THE SHOCK REFLECTION PARADOX 

Two areas of disagreement with the theories outlined above may be 
For convenient reference later, they are 

The regular reflection process appears to persist for a small range 
of angles of incidence beyond the theoretical limit cc,. The inter- 
section point remains at the wall for angles past a,  up to a,,, at which 
angle the Mach configuration begins. The interval (ao-a,) is 
measurable although small, being about two or three degrees for 
intermediate shock strengths (see figure 2). 
Although the theoretical solutions for the Mach configuration 
(i.e. for the strength of the reflected shock at the triple point) are 
tolerable for strong shocks, they become increasingly inadequate 
for weaker incident shock strengths (see figure 4). 

demonstrated experimentally. 
labelled I and I1 as follows: 

I 
c 

Figure 3. Mach reflection : intersection of reflected shock R with incident shock I 
Slipstream (contact surface) SS separates is joined to wall by stem shock S. 

two parallel outflows of different velocity, density and entropy. 

Note that both of these problems involve essentially the same difficulty, 
namely the existence of a reflected shock that appears to violate the boundary 
requirements of the flow. 

These discrepancies would not be anomalous if it could be shown that 
one of the assumptions of the theory is physically inadequate in the regions 
of discord, or, alternatively, that the experiments have insufficient resolution 
to reveal the true nature of the interaction in the small region to which the 
localized theory applies. Attempts to confirm such suspicions by shock 
reflection experiments have so far been inconclusive, however, as they are 
hampered by two inherent disadvantages. First, the angular interval of 
interest (ao-a,) is so small that, considering the resolution attainable in 
such experiments, it is difficult to make any systematic study of the angular 
dependence of a process within this range. The second, and probably 
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more significant complication is introduced by the extraneous disturbances 
from the physical corner at which the reflection process begins. It is a 
curious feature that the outflow from the shock reflection pattern is subsonic 
for angles of incidence greater than a certain value or,, which is just slightly 
smaller than ore over the entire range of incident shock strength (see figure 2). 

/ 
+ P, / ~ , = 0 . 8  - 

40' - 

20" - / 

+w-- i r ' ,  , , , I ' , -  

' I r  I 
1 

3-Shock - 

Figure 4. Shock reflection observations : experimental values agree well with regular 
reflection theory in the range a < ae. At me,  the observations leave the 
theoretical curve tangentially, and beyond ao, in the Mach reflection region, 
disagree completely with the three-shock theory. (w,  w' are the angles of 
incidence and reflection appropriate for pseudo-stationary description of the 
problem. For 01 < ao, w = a, w' = a'.) 

This means that the state of the region behind the reflected shock, which 
undoubtedly is the most interesting, is determined not only by the reflection 
process, but also by the nature of the boundaries at the ' corner ' where the 
process first begins. Consequently, although some interesting density 
irregularities are observed in this region both for or, < or < oro and for the 
Mach patterns, it is difficult to determine whether these are essential parts 
of the reflection process or merely evidence of the corner interference. 
(In some respects it is tempting to consider that it is the presence of the corner 
which causes troubles I and 11, but there is little experimental support for 
this point of view-cf. $6.) 

3. SHOCK WAVE REFRACTION 

Somewhat less ambiguous information on this subject has recently 
appeared in the course of an experimental study of another type of shock- 
wave interaction, namely the refraction of shock waves at interfaces between 
two gases (see Jahn 1956). This problem, while perhaps one degree more 
complex theoretically than the reflection problem, bears many similarities 
to it ; and in some respects it is more tractable experimentally. The theory 
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of shock refraction (Taub 1947 ; Polachek & Seeger 1951) assumes that a 
pseudo-stationary pattern will be formed, consisting of three shocks or two 
shocks and a Prandtl-Meyer wave (for our present purposes we need 
consider only the former case), and intersecting at a point on the gas 
interface (see figure 5). It is then required that the exit pressures, and the 
flow deflections via the upper and lower paths, be the same. Again, for 
given incident shock strength and gas combination, theoretical solutions 

Figure 5 .  Regular refraction of a plane shock : shock I ,  incident on interface between 
two gases 0, produces a reflected shock R and a transmitted shock T, the 
outflows from both of which are parallel to the deflected interface D. 

0 
I 

Figure 6. Mach refraction : intersection of reflected shock R and incident shock I is 
Again there is a slipstream SS from joined to interface by stem shock S. 

the intersection point. 

can be obtained only for angles of incidence smaller than some critical 
value a,. Furthermore, it appears experimentally that the assumed con- 
figuration persists, at least locally, beyond K, up to some larger angle go 

at which a ' Mach-refraction' pattern sets in (see figure 6). 
Here too, then, there is a region of disagreement with the theory, akin 

to discrepancy I in the reflection problem. It  is not unreasonable to suspect 
that the fundamental difficulty may be the same in both cases. Fortunately, 
the situation is more amenable to experimental study in the refraction case, 
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since the interval (a,, - a,) can be much larger for easily realizable conditions. 
Furthermore, in refraction experiments it is possible to change the arrange- 
ment of the physical boundaries to some extent, without necessarily changing 
the nature of the refraction conditions themselves ; and thereby the features 
of the pattern which are consequences of the boundary conditions may be 
separated from those which are inherent in the shock interaction. 

The results of refraction experiments pertinent to this problem are 
illustrated in figure 7 (plate 1). These are shock-tube photographs, taken 
through a 5-inch Mach-Zehnder interferometer set in parallel fringe 
adjustment, of the refraction of shock waves with pressure ratio 3.3 at an 
interface between air and methane. Figure 7 ( a )  (plate 1) shows the con- 
figuration for a < a,. Note that the three shocks are straight, the regions 
between them are uniform, and the intersection point is on the interface. 
Such a pattern, called a ' regular refraction ', corresponds to the theoretical 
refraction solutions for this problem. Actually, the correspondence is 
encouragingly close ; measurements of the shock strengths and angles of 
the configuration, taken from interferograms such as this, have been found 
to be in excellent agreement with the quantitative predictions of the theory. 

I 

Figure 8. Pressure profiles of the reflected wave appearing in figure 7 (b)  (plate 1). 
Shock front and following rarefaction zone 2 are stronger near the interface 
(dotted profile) than further from it (solid profile). 

However, as the angle of incidence is increased past a, into the critical 
region a,  < a < a,, the pattern shown in figure 7 (b )  is observed. Although 
the shocks still intersect at a point on the interface, this is a more complex 
interaction in which the reflected wave is no longer straight, uniform in 
strength, or ' flat-topped '. Rather, it is considerably stronger near the 
interface, and less inclined to the flow there than it is further out into the 
field, and it is followed immediately by a very sharp rarefaction region, 
which also increases in severity near the interface. This composite reflected 
signal is thus a form of peaked shock wave (see figure 8). 

The  third interferogram in this series (figure 7(c), plate 1) shows the 
pattern for a:> a,. Here the reflection joins the incident shock wave a 
short distance away from the interface, and a stem shock and slipstream are 
now present in the pattern. Note that again the reflected wave is curved 
and non-uniform, and is followed by a region of rarefaction. 

It is the non-uniform reflected shock and the sharp rarefaction zone 
seen behind it in figure 7 (6) (plate 1) and, to a lesser extent, in figure 7 (c) 
(plate 1) which particularly attract our attention in these configurations. 
A similar series of patterns, displaying zones of similar density variation 
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can also be observed in shock-reflection experiments performed at the 
appropriate values of a (see figure 9, plate 2). These zones were noted by 
several earlier reflection investigators, but the unavoidable interference of 
the corner signals largely precluded evaluation of their significance to the 
interaction. The contribution of the refraction experiments lies in the 
possibility of eliminating the corner interference in the region of interest, 
SO that the observed effects may be attributed directly to the shock interaction. 
It is this technique which permits us to attach significance to the sharp 
rarefaction zones seen in the refraction patterns displayed above, and then, 
because of the near equivalence of the two problems, to regard the corre- 
sponding zones of the reflection configurations in the same light. On this 
basis, all of the remarks in the following discussion pertain to both the 
reflection and refraction situations*. 

4. THE REFLECTED WAVE 

In addition to the more obvious features of the zone of interest around 
the reflected wave (i.e. the severity and direction of the density gradients 
and the variation of the strength of the reflected front itself along its length), 
two other pieces of information can be extracted from the interferograms. 
These are (1) that the region behind the reflected shock is one of subsonic 
flow, and (2) that the strength of the shock at the intersection point is very 
sensitively dependent on the angle of incidence. 

The subsonic character of the flow behind the shock is revealed experi- 
mentally by the catching-up of the sonic signals from the corner (in those 
problems in which they are not exactly compensated to zero strength), or 
it can be deduced directly from measurements of the incident and reflected 
shock strengths and their inclinations to the flow (see Bleakney & Taub 
1949). That this is a subsonic field suggests, of course, that any flow 
deflection processes taking place here will be continuous, relatively wide- 
spread adjustments, rather than the discontinuous, sharply localized 
processes found in supersonic flows. The significance of this point is 
emphasized by the work of Smith (1945), and Bargmann & Montgomery 
(1944), who have shown that a theory which assumes any supersonic 
variations in this region, such as other shocks, or Prandtl-Meyer fans, is 
in even poorer agreement with experiment than the theory postulating 
uniform flow. 

It  was mentioned that the strength of the reflected shock front increases 
rapidly along its length to some maximum value at the intersection point. 
This in itself suggests that some unusually severe process is taking place 
at the junction of the two shocks. It is also striking to plot the observed 
strength of the reflected shock at the interface against the angle of incidence, 
from which it appears that for angles immediately beyond u,, the shock 

* The attention of the reader is called to the recent work at Princeton of W. R. 
Smith (1956) in which reflection paradox I has also been examined in the light of a 
related shock interaction-in this case the oblique intersection of two shock waves 
of equal strength. 
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strength is extremely sensitive to a, and rises to a rather surprising value 
just before tco (see figures 4 and 10). For angles beyond a,,, the reflected 
shock strength falls off rapidly with increasing a, suggesting that the 
departure of the intersection point from the wall (or interface) relieves the 
situation which precipitated the sharp increase at ae. That this is indeed 
the case may be seen in figure 7 ( c )  (plate 1). In this well-developed Mach 
pattern, the slipstream from the intersection, which assumes the direction 
of the local flow velocity, is not parallel to the interface, indicating that 
the reflected shock has not had to deflect the flow through so great an angle 
as in the regular configurations. 

Figure 10. Shock refraction observations for 01 > aB : strength of reflected shock 
front RS (pressure behindlpressure ahead) us. angle of incidence a. 

It appears then that we are dealing here with a transition process which 
prevails only in the brief angular interval between the degeneration of the 
regular pattern at a, and the onset of the Mach configuration at ao. This 
transition pattern is somewhat hybrid ; it is ' regular ' in the respect that the 
intersection point qccurs on the boundary, but certain features of it, 
apparently associated with the non-uniform reflected shock and the subsonic 
rarefaction field following it, are somehow incompatible with the regular 
theory. 

5. INTERPRETATION OF THE OBSERVED REFLECTED WAVE 

Some insight into the significance of the anomalous reflected wave 
observed above may be gained from examination of other, more familiar 
gas-dynamic situations in which similar flow deflection requirements arise. 
For this purpose it is helpful to .recognize that the limit a,, at which these 
effects first appear, arises as a consequence of the well known ' maximum 
deflection' condition of oblique shocks (see, for example, Liepmann & 
Puckett 1952). At a,, the reflected shock is of that optimum strength and 
corresponding inclination to the flow which accomplishes the maximum 
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possible deflection of that flow. Beyond u,, the gas outflow from the 
incident shock is such that no stationary oblique shock can re-deflect it 
parallel to  the wall. The  situation at the extreme angle in the refraction 
problem, while complicated by the adjacent conditions for the transmitted 
shock, is fundamentally the same. Here there are two shocks (reflected 
and transmitted) standing in two converging uniform streams. Under the 
requirement that the exit pressures be the same, there is just one arrangement 
of strengths and accompanying positions of these shocks by which the 
maximum deflection of the converging flows is accomplished. At u,, this 
optimum configuration has been established, and beyond it some new process 
must occur. 

An analogous flow deflection limit arises in the more familiar problem 
of the supersonic wedge aerofoil (figure 11, plate 3). Here, the shock tube 
is used as a transient wind tunnel. T h e  incident shock has passed entirely 
over the model (from right to left), and we are observing the behaviour of the 
aerofoil in the ‘ steady ’ supersonic flow set up by that shock. (In this case, 
of course, a boundary layer develops along the aerofoil surface, but it is of 
zero thickness at the leading edge and does not fundamentally change the 
nature of the deflection problem.) Over a certain range of conditions, the 
deflection of the flow parallel to the aerofoil surfaces is accomplished abruptly 
by two straight bow shocks, attached to the nose of the body(see figure 11 (a), 
plate 3). (To emphasize the analogy this might be called a ‘regular’ 
deflection.) Beyond a certain limiting body angle (or below a certain flight 
velocity), however, it becomes impossible for any stationary oblique shock 
to deflect the inflow adequately. I n  this case, the bow shocks are observed 
to become stronger near the leading edge, and less inclined to the flow there. 
These stronger shocks produce subsonic, rather than supersonic, regions 
behind them containing expansions which are most severe behind the 
strongest portions of the shocks (figure 11 (b),  plate 3). As the limit is 
exceeded further, the bow shocks fuse into one continuous front, detach 
from the leading edge, and advance into the oncoming flow (figure 11 (c), 
plate 3). 

The  interpretation of the processes seen in figures 11 (b)  and 11 ( c )  (plate 3) 
seems straightforward : whatever part of the necessary flow deflection that 
is not accomplished abruptly through the bow shock is taken care of in a 
continuous fashion in the subsonic field that follows it. Such a subsonic 
field requires a stronger shock ahead of it than the supersonic field of 
figure 11 (u) (plate 3), and hence the shock must be more nearly normal to 
the inflow. If the deflection situation is made yet more severe, the region 
behind the shock becomes further subsonic, requiring a still stronger, more 
normal shock. Beyond the condition which produces a bow shock that is 
just normal to the flow at the wedge tip, there is no mechanism for further 
increasing the shock strength, other than for it to advance into the oncoming 
flow (thereby increasing its Mach number). The  gap thus created between 
the wedge and the bow shock relieves the deflection requirement somewhat, 
and an equilibrium situation is established with the bow shock fixed a finite 
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distance ahead of the wedge (figure 11(c) ,  plate 3 ) .  (This equilibrium 
position has been discussed by Laitone (1955).)  

The similarities in the nature of the flow deflection requirements, and 
in the observed behaviour of the shocks and the regions behind them, in 
this problem and in the reflection-refraction cases are sufficiently striking 
to permit the inference that the mechanism in all three problems is 
fundamentally the same. In  other words, the interpretation applied to 
the three aerofoil patterns in figure 11 (plate 3 )  should be equally appropriate 
for the regular, transition, and Mach patterns of the reflection-refraction 
problems. Such an analogy implies that the reflection and refraction 
patterns pass through the following sequence of phases as the angle of 
incidence is increased. From normal incidence up  to a = a,, the necessary 
re-deflection of the flow parallel to the boundary is accomplished abruptly 
by a reflected shock. Beyond a,, no reflected shock is adequate to accomplish 
this re-deflection entirely, and the remainder of the process is brought about 
continuously in a subsonic rarefaction field that follows the reflected shock. 
Such a subsonic region requires a stronger reflected shock front, which in 
turn must be more normal to the outflow from the incident shock. As a is 
increased further beyond a,, this outflow decreases in velocity, while 
simultaneously the deflection requirement becomes more severe, both of 
which force the reflected shock to be yet more normal to the flow. Conse- 
quently, at some larger angle a,, the reflected shock has become just normal 
to the flow, and has no further recourse than to advance into it, much as 
the bow wave detaches from the aerofoil. In  so advancing, the reflected 
shock overtakes a portion of the incident shock, thereby forming the 
characteristic Mach pattern. The  departure of the intersection point 
from the interface relieves the deflection requirement somewhat, so that 
for a given angle of incidence an equilibrium condition is established with 
the intersection point fixed on the incident shock (in the pseudo-stationary 
frame of reference)*. 

Superficially, this conception of the transition reflection process might 
not seem incompatible with the theory outlined earlier ; but actually it 
does involve a feature which contradicts one of the basic assumptions. 
The  flow deflection adjustment by the subsonic field following the shock 
has been described as a ' continuous ' process, as it appears in the interfero- 
grams, to distinguish it from the abrupt change which occurs through the 
shock itself. The  only portion of this field which is pertinent to the local 
theory, however, is that in the immediate neighbourhood of the intersection 
point, and here the term ' continuous ' would not be appropriate. Rather, 
the width of this readjustment zone is observed to decrease, and the severity 

* In a private communication, D. R. White has emphasized another requirement 
for the onset of Mach reflection, namely, that the stem shock must be strong enough 
to keep up with the incident shock: i.e. velocity of stem shock = (velocity of incident 
shock) x sin (yo. This, in turn, implies a certain pressure behind the stem, and hence 
defines the strength of the reflected shock as a function of if the assumption of 
pressure continuity in the vicinity of the intersection point is valid. 
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of the density gradient in it to increase rapidly near the intersection point, 
apparently condensing into a discontinuous variation right at the vertex 
of the angle between the shock and the boundary. Indeed, vn the basis of 
the proposed model, a discontinuity of this sort must be expected here, 
since, right at the boundary, the additional flow deflection must take place 
immediately. Such a variation would invalidate assumption (b)  of the 
regular reflection theory ; i.e. the changes in the flow in the angular region 
behind the reflection would not be negligible in comparison with those 
sustained through the shocks, regardless of how small a region about the 
intersection point is considered. 

Sharply localized subsonic variations such as this can be found in other, 
more familiar aerodynamic situations. The same type of discontinuity 
occurs in the corresponding region of the supersonic aerofoil problem 
discussed above, for example, and also in the basic problems of subsonic flow 
over a sharp convex or concave corner (see figure 12). While supersonic flows 

Figure 12. Subsonic flow over sharp corners. The abrupt deflections of the ideal- 
fluid streamlines at the comer are replaced, in real fluids, by regions of 
turbulence and separation. 

can negotiate such abrupt changes in direction neatly, via oblique shocks and 
Prandtl-Meyer waves, theoretical calculations in the subsonic case become 
ambiguous right at the discontinuities in the boundaries, and infinite or 
zero velocities appear in the results. Physically, of course, such singularities 
in subsonic flows do not occur, but are replaced by regions of separation, 
eddy formation, or general turbulence, which reflect the non-ideal nature 

. o f  the fluid involved, and which cannot be discussed on a non-viscous 
basis. However, these zones are normally quite small, and idealized theory 
can provide an adequate description of all the remaining flow field without 
any detailed consideration of the singular region. 

Presumably, a similar dissipative process takes place in the close vicinity 
of the intersection point in the reflection problem, for here too there is 
evidence of a large velocity gradient. It would be highly interesting to 
observe directly the details of this process ; but to date the experimental 
technique has not provided unambiguous description of the internal 
structure of this zone. The interferograms present information on the 
integrated density along the light path, and in this sense average out any 
three-dimensional irregularities or turbulence that might be taking place 
here. Only two-dimensional phenomena such as a cylindrical region of 
separation, or an eddy, could be recognized from the interferograms ; and 
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such effects, if they exist, apparently are confined to too small a neighbour- 
hood to be distinguished from the shock intersections at the boundary. 
However, several uncorrelated cases of abnormal density variations' in this 
region have been observed (see figure 13, plate 4). Such effects do not 
appear to be quantitatively reproducible, indicating, perhaps, that this is 
a somewhat unstable or turbulent region. 

This inability to specify the microscopic nature of the flow-adjustment 
process does not qualify fundamentally the suggestion posed by interfero- 
grams like figures 7 (b)  (plate 1) and 9 (b )  (plate 2) regarding a theoretical 
resolution of the difficulty. The  proposal is simply that an ideal-fluid theory 
of reflection can be reconciled with experiment in the transition zone 
a,  < a < a,, by the admission of a familiar type of subsonic singularity 
behind the reflected shock. 

6. SUBSONIC SINGULARITIES IN MACH REFLECTION 

The  second difficulty in the reflection problem-the failure of three- 
shock theory in application to weak-shock Mach configurations-can be 
approached from essentially the same point of view as the first ; i.e. a search 
is made for experimental indication that one of the basic assumptions of 
the local theory is not realistic. Again, the refraction problem closely 
parallels the situation of interest; in fact, there is really no formal dis- 
tinction between the three-shock Mach intersection, and the very special 
refraction problem of a shock incident obliquely on an interface separating 
air/air. I n  each case the assumed configuration and the required boundary 
conditions are the same (i.e. three shocks, intersecting at a point, out from 
which must come two parallel flows at the same pressure), and in each case, 
for a <ae,  two solutions appear, one of which is discarded as physically 
unreasonable. There is the distinction that in the air/air refraction case, 
one accepts the solution having a reflected wave of zero strength ; for the 
Mach pattern, this branch is considered trivial. Nevertheless, the problems 
are sufficiently similar to suggest that if the general refraction pattern 
encounters flow-deflection difficulties beyond a certain angle of incidence, 
the Mach configuration may likewise suffer the same fate. The  further 
inference then is that the mechanism of adjustment should also be similar, 
namely, a process like that outlined in $ 5 .  

Closer examination of the three-shock Mach intersection reveals certain 
differences between the flow-deflection situation here, and that in the 
reflection or refraction problems. In  the latter, we needed additional flow 
deflection away from the boundary. Here we find that the flows coming 
through the incident and Mach shocks are too divergent to be compensated 
by any moderately strong reflected shock, satisfying the outlet pressure 
conditions, and we look for a mechanism to complete the deflection toward 
the slipstream. (For weak incident shocks, the solutions of the three-shock 
theory place the reflected wave at an angle (0') greater than 90" to the line 
connecting the corner and the triple point. In extreme cases, it is placed 



46 Robert G. Jahn 

at an angle greater than 90" to the wall itself. T o  the present author, such 
configurations appear physically unreasonable, even in the local limit, for 
a pseudo-stationary process beginning at the corner.) 

In  these cases, theinterferograms(seefigures 7 (c), plate 1, and9 (c), plate2) 
show a subsonic compression following the reflection, and simultaneously a 
subsonic rarefaction following the Mach stem, both presumably helping 
in the flow and pressure readjustment process, and both presumably 
coalescing toward discontinuities right at the triple point. Since the 
three-shock theory applied locally to the Mach intersection does not admit 
such singularities, it would then follow that the observed reflected wave 
fronts would be in disagreement with the theory. 

I n  committing ourselves to subsonic variations to  reconcile the flow 
deflections in either the regular reflection or Mach interactions, we 
admittedly introduce certain other complications that need to be examined. 
These arise from the inherent non-uniformity of any finite transient subsonic 
field, and concern (u) the pseudo-stationary nature of the configurations 
and (b)  the curvature of the streamlines of the flow. I n  the former matter, 
Bleakney & Taub (1949) have pointed out that for angles of incidence greater 
than ws, another assumption of the theory-that the process is stationary 
in the coordinate system in which the intersection point is at rest-may no 
longer be justified, and the flow may be transient. If so, this would be 
sufficient grounds for discarding the theory in this range, and the observed 
discrepancies would no longer be a problem. However, on this point the 
accumulation of experimental data is most convincing that the transition 
patterns, and even the Mach patterns that occur at yet larger angles, are 
essentially pseudo-stationary interactions. T h e  angles and shock strengths 
of the configurations appear to be independent of the absolute time, and 
the various field regions, including those that are subsonic, scale according 
x / t ,  y / t  within the limits of observation. In  view of this, and in view of the 
added experimental fact that the dissipative mechanism, whatever it may 
be, associated with the point of singularity in a real fluid is not sufficiently 
widespread to be observed at any reasonable time after inception, it seems 
more appropriate to maintain a pseudo-stationary approach when introducing 
the suggested alterations to the theoretical model. 

The  second complication involved in a subsonic region behind the 
reflected shock follows from the work of Taub (1953), who pointed out 
that if sonic signals from the corner can reach the intersection point, we 
must expect the reflection to be curved over its entire length. In  general, 
the curvature of this shock will not be uniform, in which case the streamlines 
of the flow leaving it will also be curved, which clearly is at variance with the 
boundary condition for a straight wall. In  this connection, the argument 
in favour of a subsonic singularity gains new strength. By analogies similar 
to those introduced above it could be shown that there is adequate precedent 
for imbuing this singularity with the property not only of deflecting the 
flow abruptly, but of straightening it as well. Again, the details of the 
' uncurving ' mechanism could presumably be inferred from the form of 
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the density variation behind the shock, and the manner in which that 
variation condenses as it approaches the intersection point. 

7. CONCLUSION 
The present theories of shock reflection processes fail to account for 

(I), the persistence of a regular reflection process beyond a theoretical 
limiting angle of incidence a,, and (11), the observed strength of the reflected' 
shock in certain Mach reflection configurations. Direct reflection experi- 
ments are at a disadvantage in attempts to resolve these difficulties; but 
certain experiments on the shock-refraction process, the theoretical analysis 
of which is formally similar to the reflection problem, display, in corre- 
sponding regions of difficulty, pronounced subsonic variations behind the 
reflected shock. I n  the interval a, < a < a,, it is observed that the shock 
is much stronger than might be expected near the gas interface, and is 
immediately followed by a steep, subsonic rarefaction there, whose function 
appears to be to complete the flow deflections, to apply the proper curvature 
to the streamlines, and, in some cases, to adjust the exit pressures. The  
severity and localization of this rarefaction zone increases sharply near the 
interface. I n  fact, the variation appears to coalesce toward a discontinuity 
at the intersection point, thereby suggesting a singularity in the theoretical 
problem. 

The close theoretical correspondence of these refraction problems to 
the transition reflection (ae < a < a,,) and Mach-reflection situations, along 
with the observed similarities in the experimental observations, suggest 
resolution of the discrepancies in the latter by introduction of the same type 
of subsonic singularities. 

It is expected that in any real fluid such singularities degenerate into 
some sort of dissipative process, such as eddies, separation, or general 
turbulence ; but no positive identification of such effects on the photographs 
has been possible. Presumably, then, these processes are confined to very 
small regions ; and hence their internal details should not be significant in 
the formulation of the problem. Rather, the description of the singularities 
could be based on observations, either theoretical or experimental, of the 
subsonic regions of adjustment at finite distances from the interaction, and 
the manner in which they condense as they approach the intersection point. 

The author would like to express his appreciation to the many people 
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with him : Professors Bleakney, Curtis, Emrich, Krieth, Myers and Taub, 
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Figure 7. Shock refraction interferograms : configurations established by plane 
shock waves incident on interfaces between air and methane at angles 
(a)  a < 01 ; (h )  a, < a < ao; ( c )  a > a0. (Symbols are same as in figures 5 
and 6.) 
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Figure 9. Shock reflection interferograms : configurations established by plane shock 
waves incident on a solid boundary at angles ( a )  a < ap ; ( b )  ae < a < a,; 
( c )  a > 0 1 ~ .  (Symbols are same as in figures 1 and 3.) 
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I 
Figure 11. Diamond aerofoil at three-flight conditions : (a) straight attached bow 

shocks; (h)  curved attached bow shocks; (c )  detached bow shock. 
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Figure 13. Isolated examples of severe density gradients behind the reflected shock. 
Three interferograms and one schlieren photograph of transition reflection 
processes. 


